Detailed Marking Instructions for each question

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
1.		Ans: (£)30, (£)9•30 - ${ }^{1}$ Process: calculate mean - ${ }^{2}$ Process: calculate $(x-\bar{x})^{2}$ - ${ }^{3}$ Process: substitute into formula - ${ }^{4}$ Process: calculate standard deviation	4	$\begin{aligned} & \bullet 1(32+23 \ldots) \div 8=30 \\ & \bullet{ }^{2} 4,49,169,100,9,25,225, \\ & 25 \\ & \bullet \sqrt{\frac{606}{7}} \\ & \bullet{ }^{4} 9 \cdot 30 \end{aligned}$
Notes: 1. For use of alternative formula; award marks as follows: Mark 2 Process: calculate $\sum x$ and $\sum x^{2} 240$ and 7806 Mark 3 Process: substitute into formula Mark 4 Process: calculate standard deviation				
2.	(a)	Ans: Monthly Deal 1 is cheaper - ${ }^{1}$ Process: find price with Monthly Deal 1 - ${ }^{2}$ Process: find price with Monthly Deal 2 - ${ }^{3}$ Communication: state best Deal	3	- ${ }^{1}(279+18+45+9) \times 0.85=$ $298 \cdot 35$ - ${ }^{2}(18+45+9) \times 0 \cdot 35+279=$ $304 \cdot 20$ ${ }^{3}$ Monthly Deal 1 is cheaper
Notes: 1. For "Monthly Deal 1 " with no working award 0 marks 2. Accept $£ 298 / 299$ for deal 1 and $£ 304 / 305$ for deal 2 3. Alternative is by comparing savings. . 1 Deal 1 saves $£ 56 \cdot 25$. 2 Deal 2 saves $£ 46 \cdot 80$. 3 Deal 1 greater saving				

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
(b)		Ans: $£ 42 \cdot 19$ - ${ }^{1}$ Process: find price for The Red Polka Dot Cycle Shop - ${ }^{2}$ Process: find the difference between the price for The Red Polka Dot Cycle Shop and The Yellow Jersey Cycle Shop - ${ }^{3}$ Process: calculate total refund	3	$\begin{aligned} & \cdot{ }^{1}(310+20+50+10) \div 3 \times 2= \\ & \bullet^{2} 298 \cdot 35-260=38 \cdot 35 \end{aligned}$ $\bullet^{3} 38 \cdot 35 \times 1 \cdot 1=42 \cdot 19$
Notes: 1. Award third mark for $£ 42 \cdot 18$ 2. The actual cost from deal 1 p				
3. (a)		Ans: Mark position - ${ }^{1}$ Process: correct bearing - ${ }^{2}$ Process: correct length of line	2	- ${ }^{1} 065 \pm 2^{\circ}$ - ${ }^{2} 7 \cdot 6 \mathrm{~cm} \pm 0 \cdot 2 \mathrm{~cm}$
Notes:				
(b)	(i)	Ans: Mark position - ${ }^{1}$ Strategy: bearing from Aberdeen - ${ }^{2}$ Strategy: bearing from Ringkobing - ${ }^{3}$ Strategy: mark position	3	- ${ }^{1}$ Correct bearing of $125^{\circ} \pm 2^{\circ}$ - 2 Correct bearing of $250^{\circ} \pm 2^{\circ}$ - ${ }^{3}$ Correctly marks position
	(ii)	Ans: $340 \mathrm{~km}, 200^{\circ}$ - ${ }^{1}$ Communication: Distance of fishing vessel from oil rig - ${ }^{2}$ Communication: Bearing of fishing vessel from oil rig	2	- ${ }^{1}$ Correct distance of 340 ± 10 - 2 Correct bearing of $200^{\circ} \pm 2^{\circ}$
Notes:				

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
4.	(a)	Ans: $£ 135000$ - ${ }^{1}$ Strategy: know how to increase by 5\% - ${ }^{2}$ Strategy: increase for 2 years - ${ }^{3}$ Strategy: know how to decrease by 2% - ${ }^{4}$ Process: calculate value after 5 years - ${ }^{5}$ Communication: round to nearest thousand	5	- ${ }^{1}$ multiplier of 1.05 - $^{2} 130000 \times 1 \cdot 05^{2}=(143325)$ - ${ }^{3}$ multiplier of 0.98 - ${ }^{4} 134896 \cdot 34$ - ${ }^{5} 135000$
Notes: 1. $£ 135000$ without working award $0 / 5$ Do not accept $£ 135000 \cdot 00$				
	(b)	Ans: no value of Saraish's house is about $£ 1000$ lower - ${ }^{1}$ Process: calculate value after 4.5\% rise - ${ }^{2}$ Communication: compare values	2	-1 135850 - ${ }^{2}$ no value of Saraish's house is lower
Notes: 1. Alternative solution is to compare rises $.14 \cdot 5 \%$ rise = $£ 5850$. 2 Saraish's rise is less 3 Saraish's rise is $3 \cdot 8 \%$ (<4.5\%)				

Question		Expected Answer(s)	Max Mark	Illustrations of evidence for
5.	(a)	Ans: 9.8 metres - ${ }^{1}$ Strategy/Process: find the hypotenuse - ${ }^{2}$ Strategy: know to use correct form of Pythagoras - ${ }^{3}$ Process: calculate the length of the wall	3	$\cdot{ }^{1} 5 \times 2 \cdot 8=14$ $\bullet^{2} 14^{2}-10^{2}$ $\bullet^{3} 9 \cdot 8$
Notes:				
	(b)	Ans: £254-15 - ${ }^{1}$ Strategy: know to calculate area - 2 Process: area of triangle - ${ }^{3}$ Process: area of quarter circle - ${ }^{4}$ Process: area for turf - ${ }^{5}$ Strategy: know how to calculate the number of rolls - ${ }^{6}$ Process: calculate cost	6	- ${ }^{1}$ Rectangle - quarter circle triangle - ${ }^{2} 49$ - ${ }^{3} 19 \cdot 6$ - ${ }^{4}$ 150-49-19•6 = 81•4 - ${ }^{5} 17$ $\bullet^{6} 17 \times 14.95=254 \cdot 15$
Notes: 1. For mark 6 cost must be stated to 2 decimal places (eg do not accept $£ 342 \cdot 8$ or similar)				

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
6.	(a)	Ans: 0.9s - ${ }^{1}$ Process: find time difference	1	${ }^{1} 11: 50 \cdot 6-1: 49 \cdot 7$
Notes:				
	(b)	Ans: 179 (km/hr) - ${ }^{1}$ Strategy: extract data and substitute - ${ }^{2}$ Process: convert time to seconds - ${ }^{3}$ Process: calculate speed in km/s - ${ }^{4}$ Strategy: know how to convert to km/hr - ${ }^{5}$ Communication: round answer correctly	5	$\bullet^{1} S=5 \cdot 543 / 01: 51 \cdot 7$ - ${ }^{2} 111 \cdot 7$ $\bullet^{3} 5 \cdot 543 / 111 \cdot 7=0 \cdot 0496 \ldots$ $\bullet^{4} \times 3600$ $\cdot{ }^{5} 179$
Notes: 1. If converted to minutes the evidence would be $\begin{aligned} & .21 \cdot 862 \\ & .35 \cdot 543 / 1 \cdot 962=2 \cdot 977 \\ & .4 \times 60 \\ & .5179 \end{aligned}$				
	(c)	Ans: 1 hour 47 minutes 8.8 seconds - ${ }^{1}$ Strategy: know to convert time and multiply by 56 - ${ }^{2}$ Strategy: convert to minutes - ${ }^{3}$ Strategy: convert to hours, minutes and seconds - ${ }^{4}$ Process: all calculations correct	4	- ${ }^{1} 114.8 \times 56$ (=6428.8 secs) $\bullet^{2} \div 60(107 \cdot 146 \ldots \mathrm{mins})$ ${ }^{3}{ }^{3} 0.146 \ldots$...mins into seconds (8.8) - ${ }^{4} 1$ hour 47 minutes $8 \cdot 8$ seconds
Notes:				

Question		Expected Answer(s) Give one mark for each -	Max Mark	Illustrations of evidence for awarding a mark at each •
7.	(a)	Ans: £968•40, £357•48, £741.82 - ${ }^{1}$ Process: calculate area of drive in square feet - ${ }^{2}$ Process: calculate price for tarmac - ${ }^{3}$ Process: calculate how much gravel is needed - ${ }^{4}$ Strategy: find best way to buy the gravel - ${ }^{5}$ Process: find total cost of using gravel - ${ }^{6}$ Strategy: know to calculate minimum number of slabs - ${ }^{7}$ Process: calculate number of slabs - ${ }^{8}$ Process: calculate amount of hardcore needed - ${ }^{9}$ Process: calculate price of slabbed drive	9	- ${ }^{1} 45 \mathrm{~m}^{2} \times 10 \cdot 76=484 \cdot 2 \mathrm{sq} \mathrm{ft}$ - $^{2} 484.2 \times £ 2=£ 968 \cdot 40$ - ${ }^{3} 45 \times 50=2250 \mathrm{~kg}$ ${ }^{4}{ }^{4} 2 \times 850 \mathrm{~kg}+11 \times 50 \mathrm{~kg}$ - ${ }^{5} 2 \times £ 125.99+11 \times £ 8.29+$ £14.31 $=£ 357 \cdot 48$ - ${ }^{6}$ Evidence ${ }^{7} 15 \times 15+7 \times 7+8=282$ Or $45 \div 0.16=282$ (rounded up) $.^{8} 45 \mathrm{~m}^{2} \times 0.04 \mathrm{~m}=1.8 \mathrm{~m}^{3}$ $2 \times 2=4$ tonnes $\begin{aligned} & -{ }^{9} 282 \times £ 2 \cdot 12+4 \times £ 18+2 \times \\ & \quad £ 35 \cdot 99=£ 741 \cdot 82 \end{aligned}$
Notes:				
	(b)	Ans: Choice of surface plus reason - ${ }^{1}$ Strategy: know to find cost per year for each - ${ }^{2}$ Process: calculate the 'cost per year' for each surface type - ${ }^{3}$ Communication: state conclusion with valid reason	3	- ${ }^{1} 968 \cdot 40 \div 30,357 \cdot 48 \div 10$, $741 \cdot 82 \div 25$ - ${ }^{2}$ Tarmac costs $£ 32 \cdot 28$ per year Gravel costs $£ 35.75$ per year Slabs cost $£ 29.67$ per year - ${ }^{3}$ Slabs cheapest per year, or gravel cheaper initially etc
Notes:				

[END OF MARKING INSTRUCTIONS]

